Process Calculi for Adaptive Enumeration
Strategies in Constraint Programming

Eric Monfroy!2, Carlos Olarte®, and Camilo Rucda4

! Universidad Técnica Federico Santa Maria, Valparaiso, Chile
Eric.Monfroy@inf.utfsm.cl
? LINA, Université de Nantes, France Eric.MonfroyQuniv-nantes.fr
® LIX, Ecole Polytechnique Paris, France carlos.olarte@lix.polytechnique.fr
4 Pontificia Universidad Javeriana, Cali, Colombia crueda@cic.puj.edu.co

Abstract. Constraint programming (CP) has been extensively used to
solve a wide variety of problems. Solving a constraint problem mainly
consists in two phases: propagation to prune the search space, and enu-
meration to choose a variable and one of its values for branching. Enu-
meration strategies are crucial for resolution performances. We propose a
framework to model adaptive enumeration strategies using a stochastic,
non-deterministic timed concurrent constraint calculus. Using the reac-
tivity of the calculus we can design enumeration strategies that adapt
themselves according to information issued from the resolution process
and from external solvers such as an incomplete solver. The experimental
results show the effectiveness of our approach.

1 Introduction

Constraint Satisfaction Problems (CSP) appears nowadays as a very conve-
nient way to model various industrial applications (e.g. scheduling, timetabling,
Boolecan satisfiability, etc.). CSP are represented by a set of constraints (rela-
tions) between variables. Each variable is associated to a domain which repre-
sents the values the variable could be given. The resolution process consists in
assigning to cach variable a value from its domain such that the constraints arc
satisfied.

Constraint propagation based solvers arc one of the most common methods
for solving CSPs. This technique is complete by interleaving enumerations and
constraint propagations. Constraint propagation prunes the search tree by elim-
inating values that cannot participatc in any solution. Enumeration creates one
branch of the scarch tree by instantiating a variable (z = v) and another branch
(z # v) for backtracking when the first branch docs not contain any solution.
Although all cnumcration strategies that preserve solution sets arc valid, they
have drastic impacts on efficiency (up to several orders of magnitude). More-
over, no strategy is the best for all problems. The issuc is thus to select the right
value of the right variable for cnumeration. This problem can be tackled with
various approaches: static and gencric strategies, problem specific strategies [4],
dynamic [6] or adaptive strategies to predict [3] or repair strategics (2, 5].

© A. Gelbukh, A. Kuri (Eds.) Received 17/06/07
Advances in Artificial Intelligence and Applications . Accep{ed 3 1/08/07
Research in Computer Science 32, 2007, pp. 227-237 Final version 30/09/07

228 Eric Monfroy, Carlos Olarte, Camilo Rueda

We arc interested in modeling adaptive strategies (both for repairing and
predicting) using a stochastic, non-deterministic concurrent constraint process
calculus, the sntcc calculus [12], an extension of ntcc(11]. The advantages of
using sntcc arc the following. First, we obtain a clear, formal, and homogencous
(using templates) design of the strategics. Then, the reactive aspect of sntcc
is used to describe the dynamicity of the strategics, i.c. the ability of adapting,
changing, or improving a strategy during the solving process. Additionally, reac-
tivity allows us to introducc on-line expert-users or external solvers knowledge
to guide the scarch. The stochastic aspects of the calculus enables us to rank the
strategics with some probabilitics of being applied: the higher t.hc. probability.,
the higher the strategy is judged to be efficient. The non-determinism of sntcc
is used to tic-break strategics that have equal probabilitics; we thus introduce
randomization from which the solving process can benefit (c.g. [7]). :

Using sntcc we show several types of adaptive strategics: strat.cgles to diver-
sify cnumeration; stratcgics to reward “good” enumeration strategics .(mcrcasing
their probabilitics of being applied) (sce [5]); strategies that usc an incomplete
but very fast solver (c.g. local search) to identify promising branches leading to
a hybrid resolution mechanism; and finally strategies to non-deterministically
choose a variable when several variables have the same domain size (sce [7]).

This mechanism has been implemented in the Oz language [9] running a sim-
ulator of sntcc. The experimental results we obtained are more than promising.
The adaptive dynamic strategies bechave better than the fixed strategics.

The rest of the paper is organized as follows. In Section 2 we give an overview
about constraint programming and rclated work regarding dynamic cnumeration
strategics. Scction 3 presents the sntcc calculus a non-deterministic and stochas-
tic extension of tcc [14]. Section 4 describes our framework, a gencric process
for describing strategics, and four instantiations of the framework. Scction §
shows some experimentations and Scction 6 concludes the paper and gives some
rescarch directions.

2 Constraint propagation-based solvers

In constraint programming (CP), problems arc modecled by mecans of a set V
of variables, a set of domains for these variables D and a set of constraints C
over the variables. The idea is to choose a value from D for cach variable in
V s.t. all the constraints arc satisfied. Solvers based on constraint propagation
alternate pruning of the scarch trec and split of the scarch space. The former
prunes variable domains by climinating values that cannot be part of a solu-
tion. Nevertheless, propagation is not a complete mechanism. In some cascs, the
propagation phase never can find a solution nor determine if there arc none. In
this case a split phase is required, creating two or more subproblems to continue
the scarch. Scarching for a solution in CP leads to a search treec where cach node
represents a new subproblem.

Although all enumeration strategics preserving solutions are valid, they dras-
tically affect the time required to find solutions by several orders of maguitude

Process Calculi for Adaptive Enumeration Strategies in Constraint Programming 229

(sce, c.g. [5] for some examples). Thus it is crucial to select a good one (that
unfortunately cannot be predicted in the gencral case) or to climinate a bad one
(by obscrving and cvaluating its behavior). Numerous works were conducted
about split strategics. Some studies focused on generic criteria (e.g. minimum
domain) for variable selection, and for value sclection (e.g. lower bound, or bisec-
tion). Some works define strategics for some specific problems (c.g. [4]) where the
“best” strategy can be determined according to some static criteria. However,
an a priori decision concerning a good variable and value selection is very diffi-
cult (and almost impossible in the general case) since strategy effects are rather
unpredictable. Information issued from the solving process can also be used to
determine the strategy (e.g. [3]). [2] proposes adaptive constraint satisfaction:
algorithms that bchaves poorly are dynamically changed by the next candidate
in a list. In [7], when several choices are ranked equally by the fixed enumera-
tion strategy, randomisation is applied for tie-breaking. In [5], by observing and
cvaluating the solving process, bad strategics arc climinated whereas good oncs
arc given morc chance to be applied.

3 sntcc Calculus

Process calculi arc mathematical formalisms to model and verify concurrent
systems. With (few) operators, they express a wide varicty of behaviors such as
mobility [13], time and reactivity [14, 11], stochastic and probabilistic choices [8]
among others. We arc here interested in calculus derived from the Concurrent
Constraint model (cc) [15]. cc is based on the concept of constraint as an entity
carrying partial information, i.e. conditions on the values variables can take. This
model has been extended with the notion of time in tcc ([14]), non-determinism
and asynchrony in ntcc ([11]) and stochastic and probabilistic behavior in pcc
and sntcc ([8, 12]).

In cc, process interactions are determined by the constraints accumulated
in a global storc (i.c. a sct of variables and a conjunction of constraints). The
store is uscd by processes to share information and for synchronization purposcs.
The store is monotonically refined by adding information using tell operations.
Additionally, it is possible to test if a constraint ¢ can be entailed from the store
by means of so-called ask operations. Ask processes allows for synchronisation
since they remain blocked until more information is available to entail the query.

sntcc[12] extends ntcc to model stochastic behavior. In both of them, time
is conceptually divided into time-units. In a particular timec-unit, a determin-
istic concurrent constraint process receives a stimulus (a constraint) from the
cnvironment and it is executed with this stimulus as the initial store. When no
further evolution is possible, it responds to the environment with the resulting
store. This also determines a residual process which is then exccuted in the next
time-unit (sec next operator below).

The model of stimulus and responses in tcc languages allows to model reac-
tive systems in which agents arc in permanent interaction with the cnvironment.
In our particular case, the environment will be the processes solving a CSP and

230 Eric Monfroy, Carlos Olarte, Camilo Rueda

stimulus will be statistics taken from this solving process (e.g. number of variable
instantiated, depth in the search tree, etc). In turns, strategics modeled with the
calculus will respond to the environment with a possible cnumeration strategy
according to the previous knowledge and rules defined in the strategy.

3.1 Syntax and Processes Description

In this section we present the syntax of the sntcc calculus and the intuitive
description of the constructs. See [12] for a full treatment of thc operational
semantics and the logic associated to the calculus.

Process in sntcc are built from the following grammar:

P,Q =tell c| >~ when ¢; do P; | P||Q | local z in P
i€l
| next P |unlesscnext P| 'P| P+,Q | p(x)

Process tell ¢ adds the constraint ¢ to the current store, thus making c avail-

able to other processes in the current time interval. Process) when c; do P;

j€J
where J is a finite set of indexes, represents a process that non-deterministically
choose a process P; s.t ¢; is entailed by the current store. The chosen alterna-
tive, if any, precludes the others. If no choice is possible in the current time unit,
all the alternatives are precluded from execution. We shall use) P; when the
j€Jd
guards arc true (“blind-choice”) and we omit “Y"” when J is a singlcton. Pro-
j€J

cess P||Q represents the parallel composition of P and Q. Process local z in P
bchaves like P cxcept that the variable z is local in P, i.c., the cnvironment
cannot scc the information that P. produces on z.

The only move of next P is a unit-dclay for the activation of P. We usc
next”(P) as an abbreviation for next(next(...(next P)...)), where next is
repcated n times. unless ¢ next P cxccutes the process P in the next time-unit
if the current store cannot cntail the constraint c.

IP stands for the replication of P, i.e. the execution of a copy of P in each
time-unit. This construct is equivalent to P|lnext P||lnext 2P....

P +, @ introduces stochastic behavior. This process evolves to P with a
probability p and to @ with a probability 1 — p. This probabilistic choice can be
extended to multiple processes of the form P +, ... +,,_, P, normalizing the
probabilities to guarantee that) p; =1

Recursion in sntcc is defined by means of processes definitions of the form

def
p(mla'-axn) = A

P(Y1, .-, Yn) i an invocation and intuitively the body of the process definition
(i.e. A) is exccuted replacing the formal parameter by the actual parameters
y. When |z| = 0, we shall omit the parenthesis.

To avoid non-terminating sequences of internal reductions (i.c., non-terminating
computation within a time interval), recursive calls must be guarded in the con-
text of next (sce [11] for further details). :

Process Calculi for Adaptive Enumeration Strategies in Constraint Programming 231

4 A framework for modelling adaptive strategies

Devising a framework for dynamic enumeration strategies resembles the idea
of reactive systems [1]. Resolution processes can be viewed as the environment
adding new information (stimulus) to the system to produce possibly “better”
enumeration strategies. Here we propose modelling reactive and adaptive enu-
meration strategies using sntcc. Stimulus will be statistics taken from the solvers
(c.g. depth of the scarch tree, number of variable instantiated, etc.) and the re-
sponse of the system (resulting store in each time-unit) will be the variable (var)
and the value (val) for enumeration. Constructs in the calculus will help us to
define rules to choose the “best” strategy in cach node of the scarch tree. :

Defining dynamic enumeration strategies as sntcc processes has several ad-
vantages, namcly 1) The stimulus-response model allows to clearly define the
interaction between the resolution process and the dynamic enumeration strate-
gies. 2) Complex synchronization patterns can be defined (due to blocking asks)
allowing us to coordinate different processes adding new information to guide
the search. In particular, we show how we can implement enumeration strategies
guided by external solvers such as local search. In this case the framework can be
viewed as a solver coordinator. 3) The stochastic component of the calculus al-
lows us to rank strategies with some probabilities of being applied. Additionally,
probabilitics of cach strategy can be dynamically changed during the solving
process. 4) Non-determinism can be used to tie-break strategies that arc equally
ranked. Finally, 5) the parallel operator allows us to integrate incrementally new
processes telling information useful to adapt the strategy or combine rules in a
compositional way.

Given a CSP P with a sct of constraints C and a dynamic strategy S (i.e a
sntcc process) the framework works as follows: 1) The constraint solver creates
the first node of the search tree imposing the constraints in C. 2) The enumer-
ation procedure creates a new sntcc time-unit. When doing that, it feeds in
the sntcc store with statistical information of the solving process as stimulus.
3) A sntcc interpreter computes the resulting store w.r.t. the stimulus and the
strategy S. 4) After stability in the sntcc store, the variable (var) that must
be split and the valuc (val) that it must take are entailed from the sntcc store.
5) Finally the cnumcration procedure creates as usual two choices in the con-
straint solver: var = val and var # val leading to a new phasc of propagation.
In this way, the scarch trec is explored using dynamic choices according to S
and statistics taken from the resolution process.®

A template of a strategy S in our framework can be defined as the parallel
composition of three processes:

Strategy = Choice||Update_Probabilities||[External knowledge

% sntcc constraints and store must not be confused with constraints C in the CSP.
The former are used to determine the evolution of the strategy and the latter define
the problem to be solved

232 Eric Monfroy, Carlos Olarte, Camilo Rueda

Update_Probabilities (U_P) changes the probability of each strategy ac-
cording to user defined rules. Expert-user knowledge or results taken from ex-
ternal solvers (i.e. local search, genetic algorithms, etc.) can be used to adapt
the strategy during its exccution by defining an External knowledge (E_K)
process. Additionally, one could add on-line new information (constraints) as
stimulus to fix some parameters in the strategy. This can be uscful when expert
users observing the solving process can give some hints for improving the scarch.
Finally, Choice makes a probabilistic or non-deterministic choice according to
information inferred from both U_P and E_K. In the following, we instantiate
this generic process to define some strategics that will be tested in Scction 5.

4.1 Diversifying Enumeration Strategies

Our first dynanic strategy consists in applying alternatively three different static
value sclection: min (sclects the lower bound of the domain), maz (the upper
bound) and mid (the closest element to the middle of the domain) leading to a
diversification of the value selection. The variable to be split is always the variable
with the smallest domain (i.e the variable selection is fixed). The bchavior of this
strategy can be captured by the following process:

Choice = tell (val = min) || next tell (val = mid) ||
next? tell (val = maz) || next® Choice

S; = Choice

4.2 Probabilistic Choice of the Value Selection

Although S; dynamically changes the value sclection, it always applies thc same
pattern of choices. The following strategy changes the probability of applying
a value sclection according to the results obtained previously. The number of
variables that has not becn instantiated yet is the stimulus introduced by the
constraint solver. The idea is to increase the probability of some value sclection
when it allows good pruning in the next node of the scarch tree. If the sclection
leads to a failed node in the search tree, its probability is decreased giving more
chance to other strategies to be applied. ’

Init = tell (pMin =1 ApMid=3}ApMaz =3)
UP =when VarNI < VarNI' do increase(val’)+
when VarNI > VarNI' do decrease(val')
Choice = tell (val = min) +,min tell (val = mid) +,miq tell (val = maz)
S; = Init || 'Choice|| Inext (U_P))

In the cxpression above, VarNI (resp. VarNI') represents the number of vari-
ables not instantiated in the current (resp. previous) node of the scarch tree.
pMin, pMid and pMaz are the probabilities of choosing each value sclection.
increase (resp. decrease) increases (resp. decreases) in a constant factor the
probability of the previous value selection (val’) updating the rest of probabil-
itics to guarantee pMin + pMid + pMaz = 1. Once U_P has dctermined the

Process Calculi for Adaptive Enumeration Strategies in Constraint Programming 233

ncw probabilitics, Choice makes a probabilistic choice between cach alterna-
tive. Thus, the behavior of this strategy is to apply (probabilistically) the valuc
sclection that has not failed lately.

4.3 Local search based decisions

Integrating complete and incomplete methods for constraint solving has been
shown promising for reducing the time required to obtain solutions in CP (10].
In our case, we use a descent algorithm for local search to determine the “best”
value selection to continue the search in the CP solver. Let V = {00
be the set of variables of the CSP with domains D = {d,,...,d,}. The pro-
cess LS(v;, value, cv) computes local search with a neighborhood function NB :
D — 2P s.t. for all configurations ¢ and for all ¢; € NB(c), ¢; Ly, = value i.e,
the assignment v; = wvalue is preserved during the search. In our tests, NB
computes a sct of configurations by changing one variable not yet determined
(i.c. |[dom(v;)| > 1) at a time. Additionally, when no moves improve the cur-
rent configuration, a random restart is performed introducing diversification in
the algorithm. After a fixed number of iterations, the LS process binds cv to
the number of constraints violated in the best solution found. In this way, syn-
chronization with the rest of the system is achieved. Thus, LS processes such
as LS(v;, min(v;), Smin), LS(vi,mid(v;), lsmiq) and LS(vi,maz(v;),lSmaz) can
be executed in parallel to determine the most promising branch to scarch for a
solution (min, mid, and maz being the usual valuc selections).

Since computing local scarch in each time-unit (node in the search tree)
may causc overloads, we can control when the strategy uses LS-based decision.
For example, we can apply LS only in the 3 first levels of the search tree (i.c
depth < 3) or when more than a certain number of variables are instantiated.
This kind of control can be achieved modifying the predicate cond in S3:

EK = LS(vi,min(v;), smin)||LS(vi, mid(v;), Ismia) || LS (vi, maz(v;), ISmaz)
Choose = when lspin < ISmid A lSmin < lSmaez do tell (val = min)
+when [s;miq < ISmin AlSmid < ISmee do tell (val = mid)
+when [s;00 < ISmin A lSmaz < ISmiq do tell (val = maz)
Ss = !(when cond do (local Is,in, ISmids [Smaz in E_K||Choose) +
when —cond do Sy 5)

Note that when S3 does not apply local search based-decisions, it behaves
like Sl or Sz.

S3 can be improved by cvaluating more than one variable with LS to find the
most promising branch. This can be done extending E_K and Choose processes
as follows: :
EX = Myicvsurs(LSWi min(v:), Ismin,)|| LS (vi, mid(v;), lsmia,)|

LS(v;, maz(v;), lSmaz;))

Choose = local MinCost in tell MinCost = Min(ISmin, . Smidy. .+ Smaz,..)|l

S (when Ispin, = MinCost do tell (var = v; Aval = min)+
i€l.n :
when Is,nig, = MinCost do tell (var = v; A val = mid))

when [sinaz, = MinCost do tell (var = v; A val = max))

234 Eric Monfroy, Carlos Olarte, Camilo Rueda

where IT stands for parallel composition of several processes and Vseicctea denotes
the sct of variables to be evaluated. E_K thus launches several LS processes that
arc synchronized with the non-deterministic choice in Choose. In this way, the
variable and the value for that variable with minimum cost w.r.t. to the local

scarch algorithms is chosen.

4.4 Randomized Variable Selection

This strategy aims at randomly (non—deterministicélly) choosing a variable when
multiple variables have the same domain size. Hence, we arc able to tic-break
strategics with the same probability of being applied. This mechanism has shown

good performances for some CSPs in (7). J
To implement this strategy, the state of the variables in the solver (i.c. their

domains) must be sent as a stimulus. In the sntcc store we thus have “a copy” of
the variables of the solver. This strategy computes the minimal size (min_size)
of the variables domains to filter the variables whose size is equal to min_size.
This new list of variables is stored in a local variable V Set. Next, the strategy
chooses non-deterministically one variable in the set V Set:

u._pP = tell (Min = min_domain(Problem_vars))||
tell (VSet = filter(Problem_vars, Min))

Choose = Y, cy e tell (Var =v;)

S4 = ! local Min,V Set in (Choose || Update)

Note that Sy only performs variable selection. Executing it in parallel with
some of the previously defined strategies leads to a scheme of dynamic variable
and valuc sclection.

5 Experimental Results

Tests presented in this section were performed in a Pentium 4 1.80GHz CPU
running Linux Gentoo, kernel 2.6.15 and Oz system 1.3.1.

We run different instances of the canonical problems Magic Sequence, Knights,
Magic Square and N-Queens (see [9] for an Oz program solving these problems).
For each problem we compare static strategies with dynamic strategies in Tables
1, 2, 3 and 4 © respectively. We measure the average number of nodes explored
(including failed nodes) and the average time to find one solution. In what fol-
lows, we present a brief description of each problem and the results we obtained.

Magic Square: The Magic Square Puzzle consists in finding a N x N matrix
such that: 1) Every ficld of the matrix is an integer between 1 and N2. 2) The
fields of the matrix are pairwise distinct. 3) The sums of the rows, columns, and
the two main diagonals arc all equal.

6 «.» denotes more than 1.000.000 nodes.

Process Calculi for Adaptive Enumeration Strategies in Constraint Programming ~ 235

For this problem we compare the static value selections min, mid and maz
provided by Oz sclecting always the variable with the smallest domain. Strategy
S3 exccutes Sy after applying LS-based decision in the first 3 levels of the scarch
tree and cvaluates the two variables with shortest domain in each case.

Note that for instances where N > 4, dynamic strategies outperform static
value selections. Furthermore, when the difference between the number of nodes
cxplored is not significative (i.c N < 4), execution time is better with the static
strategics due to the overload of the execution of the sntcc interpreter.

Knights: The idea is to find a sequence of knights moves on a N x N chessboard
such that cach field is visited exactly once and that the moves return the knight
to the starting ficld, which is fixed to the lower left field.

For this problem we compare also static value selection min, mid and maz
vs dynamic strategics S1, Sp. In this case S; and S, slightly outperform Min
regarding the number of nodes cxplored and show better performances w.r.t.
Maz and Mid.

Magic Sequence: A magic scquence of length n is a sequence zg, 71, . . 4T OF
integers such that for cvery 0 < i < n—1:1) z; is an integer between 0 and
n — 1 and 2) the number ¢ occurs exactly z; times in the sequence.

Similar to the Knights problem, we compare the same strategies. According
to the form of solution for this problem where the first value in the sequence
must be a value close to the maximum (representing the number of zeros in the
scquence) and the next onc must be a small one, S; turns out to be a good
strategy solving all the instances in 4 nodes. As expected, if it starts selecting
the minimum or the mid value, we obtain results similar to the static strategies.

N-Queens: This problem consists in placing N queens on an N x N chess board
~ such that no two queens attack each other. :

We compare Sy with the following fixed strategies: naive (selects the leftmost
variable), size (selects the leftmost variable whose domain is minimal), min (the
leftmost variable whose lower bound is minimal) and maz (the leftmost variable
whosc upper bound is maximal). In all the cases the value selected is the closest
to the middle of the domain (mid). Note that the size strategy is known for this
problem as a good strategy exploring a few amount of nodes before finding a
solution. S; makes some improvements randomizing the variable selection when
multiple variables have the same domain size. Notice also that size is better
regarding the exccution time due to the overload of the sntcc interpreter in Sy.

6 Concluding remarks

We proposed a generic framework to model and integrate adaptive enumeration
strategics in a constraint propagation-based solver. This framework is based
on sntcc, a stochastic non-deterministic concurrent constraint calculus. The
reactivity of the calculus allows the strategies to adapt themselves according to
obscrvations of the resolution. Additionally, parallel composition enables us to
add new processes to guide the search, even external processes such as incomplete

236 Eric Monfroy, Carlos Olarte, Camilo Rueda

Mazx Mid Min S S2 S
Nodcs|Time(s)| Nodes [Time| Nodes [Time|Nodes Time| Nodes [Time|Nodes|Time
16 0.10 6 0.09 27 |0.09 9 0.05| 6.05 [0.35| 8.67 | 0.49

1209 0.13 380 | 0.16 | 480 | 0.19 | 3449 |19.45[1611.1 [8.16 [101.56] 1.70
- - 151211(11.11|158006] 10.4 | 573 | 3.10|489.10[2.51 [387.5 | 4.01

- - 2929 [15.60[1585.38] 8.04 |528.27(6.93
= - 2026 |11.03[2783.87|14.06{203.25[14.62
- - 257 | 1.77 |2267.27[11.90/495.55]13.33

oo| ~i| o] en| | W Z

Table 1. Magic Square Problem

Max Mid Min S S2

N [Nodes|Time(s)|Nodes[Time[Nodes|Time Nodes|[Time[Nodes|[Time
8| 34 0.43 46 | 0.40| 44 |0.39]| 33 |0.82[35.07]0.84
10| 1838 2.41 69 0.43 76 0.44 61 1.26 [69.71 [1.36
12| 98 0.56 - - 117 |0.56| 95 [1.83]110.5]2.06
14 1116 | 3.09 - - 174 | 0.81| 142 [2.83 [146.63| 2.9

Table 2. Knights Problem

methods (c.g. local search) or heuristics from expert-users. The framework was
instantiated with 4 dynamic strategies that showed better performances than
static strategies to solve four well known CSPs.

The main advantage in using this framework is that one can cxpress com-
plex enumeration strategies only adding/modifying snicc processes in the strat-
egy definition. Issues concerning synchronization, choices, ctc. are relayed to
the formal behavior provided by the calculus. Furthermore combining different
enumeration strategics can be easily achieved by using parallel composition or
probabilistic/non-deterministic choices. In this way, strategies can be improved
running them in parallel. Finally, an interesting feature is that cxternal solvers
can be synchronized with the constraint-based solving process. Thus, informa-
tion provided by them can guide the variable/value selection during the scarch.

Our interest in this framework is twofold: 1) to integratc more indicators from
the solving process to better guide the search, and 2) to integratc morc external
solvers and achieve their coordination using process calculi. The final idea is to
provide a generic and adaptive framework for hybrid resolution of CSPs.

References

1. G. Berry and G. Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming, 1992.

2. J. Borrett, E. Tsang, and N. Walsh. Adaptive constraint satisfaction: The quickest
first principle. In Proc. of ECAI’1996, pages 160-164. John Wiley and Sons, 1996.

3. T. Carchrae and J. C. Beck. Low-Knowledge Algorithm Control. In Proceedings of
the National Conference on Artificial Intelligence, AAAI 2004, pages 49-54, 2004.

4. Y. Caseau and F. Laburthe. Improved clp scheduling with task intervals. In
Proceedings of ICLP’199/, pages 369-383. MIT Press, 1994.

11.

12.

13.

14.

15.

Process Calculi for Adaptive Enumeration Strategies in Constraint Programming 237

Mazx Mid Min S Sz

N |Nodes[Time(s)|Nodes[Time|Nodes|Time|Nodes| Time|Nodes| Timeo
70 31 0.41 35 0.39 35 0.39 0.42 35 0.83
90 41 0.48 45 0.41 45 0.40 0.42 45 0.99
110 51 0.58 55 0.42 556 |0.42 0.42 55 1.18
130 61 0.74 65 0.47 65 |[0.45 0.45 65 1.41
150 71 0.98 75 0.52 75 0.51 0.45 75 1.64

IR LS

Table 3. Magic Sequence Problem

Naive Size Mazx Min Sa
N | Nodes [Time(s)[Nodes[Time[Nodes[Time|Nodes| Time| Nodes | Time
32 |119636[4.1 79]0.32 - - - - 73.15 | 0.49
64 - - 89 0.4 - - - - 71.7 | O.67
128 - - 127 [0.42 - - - - [126.45] 1.36
256 - - 257 [0.45 - - - -]254.3[4.01

Table 4. N-queens Problem

. C. Castro, E. Monfroy, C. Figueroa, and R. Meneses. An approach for dynamic
split strategies in constraint solving. In Proceedings of MICAI’05, volume 3789 of
LNCS, pages 162-174. Springer, 2005.

. P. Flener, B. Hnich, and Z. Kiziltan. A meta-heuristic for subset problems. In

Proceedings of PADL’2001, volume 1990 of LNCS, pages 274-287. Springer, 2001.

C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-

domization. In Proceedings of AAAI'98, pages 431-437, Madison, Wisconsin, 1998.

V. Gupta, R. Jagadeesan, and V. A. Saraswat. Probabilistic concurrent constraint

programming. In Proc. of Int. Conf. on Concurrency Theory, pages 243-257, 1997.

S. Haridi and N. Franzn. Tutorial of Oz., 2004. Available at www.mozart-oz.org.

. E. Monfroy, F. Saubion, and T. Lambert. Hybrid csp solving. In Proceeding of

FroCoS’05, volume 3717 of LNCS, pages 138-167. Springer, 2005. invited paper.

M. Nielsen, C. Palamidessi, and F. D. Valencia. Temporal concurrent constraint

programming: Denotation, logic and applications. In Special Issue of Selected Pa-

pers from EXPRESS’01, Nordic Journal of Computing, 2001.

C. Olarte and C. Rueda. A stochastic non-deterministic temporal concurrent con-

straint calculus. In Proceedings of SCCC’05, 2005.

J. P. R. Milner and D. Walker. A calculus of mobile processes, Parts I and II

Journal of Information and Computation, 100:1-77, Sept. 1992.

V. Saraswat, R. Jagadeesan, and V. Gupta. Fundation of timed concurrent con-

straint programming. In IEEE Symp. on Logic in Comp. Science. IEEE, 1994.

V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent

constraint programming. In Proc. of POPL’91, pages 333-353. ACM Press, 1991.

